The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions
نویسندگان
چکیده
In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety (Fs) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of Fs in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) Fs for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical Fs of the homogeneous finite slopes subjected to earthquake forces.
منابع مشابه
Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملStudy of Reinforced Slopes Safety Factor Using the Inclined Slices Method
Stability of reinforced slopes is almost always carried out using limit equilibrium methods and controlled by the shear strengths of the slope materials and the extension force of reinforcements. According to limit equilibrium methods, the stability of slopes is assessed by dividing the whole failure wedge into several vertical elements. In order to determine the safety factor of the reinforce...
متن کاملPrediction of structural forces of segmental tunnel lining using FEM based artificial neural network
To judge about the performance of designed support system for tunnels, structural forces i.e. peak values of axial and shear forces and moments are critical parameters. So in this study, at first a complete database using finite element method was prepared. Then, a model of artificial neural network (ANN) using multi-layer perceptron was developed to estimate lining structural forces. Sensitivi...
متن کاملStudy of Reinforced Slopes Safety Factor Using the Inclined Slices Method
Stability of reinforced slopes is almost always carried out using limit equilibrium methods and controlled by the shear strengths of the slope materials and the extension force of reinforcements. According to limit equilibrium methods, the stability of slopes is assessed by dividing the whole failure wedge into several vertical elements. In order to determine the safety
factor of the reinfor...
متن کاملPrediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks
In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...
متن کامل